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DETERMINATION OF THE DYNAMIC CONTACT STIFFNESS OF AN ELASTIC LAYER* 

E.V. GLUSHKOV and N.V. GLUSHKOVA 

An estimate of the limits of applicability of applied methods of 
computing the impedance characteristics of a medium that are utilized 
extensively in engineering practice is given on the basis of an exact 
solution of a dynamic contact problem. The dependence of the dynamic 
contact stiffness of a layer on the size of the contact domain and the 
frequency of the steady harmonic vibrations is analysed. 

It is well-known that the unknown distribution under a stamp and the total reaction force 
of the medium /l/ must be found by solving an integral equation for a rigorous description 
of the interaction between a non-deformable stamp and an elastic medium (half-space or layer). 
Despite the numerous methods developed up to this time, the solution of the integral equations 
of dynamic contact problems is fairly mime-consuming. Consequently, approximate approaches 
are often utilized in practice to determine the elastic reaction of the medium. For instance, 
the contact stress distribution is assumed to obey a certain law without solving the contact 
problem while the reaction of the medium (the compliance of the base) is determined by solving 
the first boundary-value problem of elasticity theory (the displacements are found for given 
surface stresses). In many cases this approach yields completely satisfactory results, but the 
question of the limits of its applicability is still open. 

A comparison of the results of the exact and approximate approaches is presented below, 
a brief description is given of the methods used, and the most charactersitic results of com- 
putations are presentedsC?t. f szcA detailed description of the derivation of the computational 
formulas, their realization on an electronic computer, and the numerical results obtained can 
be found in Glushkov E.V. and Glushkova N.V., Dynamic Reaction of an Elastic Layer; Comparison 
of the Exact and Approximate Approaches. Unpublished Paper 2250-B89, VINITI April 7, 1989.) 

1. An elastic layer of thickness h is considered whose lower face is fastened stiffly to 
an undeformable base while a circular stamp of radius a vibrating under the action of a 
vertical load Frl*' is placed on the stress-free upper face. There is no friction between 
the stamp and the medium (smooth contact), and the stamp vibrations and points of the medium 
are assumed to be steady with angular frequency o. The stamp mass is m and the layer 
characteristics are the density p, the shear modulus ut and Poisson's ratio v. 

Henceforth all the dimensional quantities will be presented in units expressed in terms 

of E, = h, p0 = p, Vg = vflp; for example 0 = Bnt,fiv,, f is the frequency in Hertz. 
The vertical translational displacements of the stamp are given by the expression 

w = F/(P1 - rrwy, P, = 1s q1 (I, y) dx dy = P,/w (1.1) 
n 

Here P is the total force acting on the surface of the medium in the contact domain, qr(x, 
@) is the stress distribution under the stamp during its vibration with unit amplitude, and 
Sz is the contact domain. 

The function P,(o) describes the dynamic contact stiffness of the elastic medium. It 
is the reciprocal of the compliance function of the elastic foundation. 

The stresses q, are determined from the integral equation /2/ 

(14 
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The contours of integration ]rl, ]Tz coincide with the real axis, while deviating from it 
in the complex plane when circumventing real poles. The direction of the circumvention is 
dictated by the principle of limit absorption f2.I. 

within the framework of the applied theory the contact stress distribution is not deter- 
mined from the integral Eq.(f.2) but is assumed to obey a certain law 4 (r), r = gzz + y2. The 

conditions of stamp contact with the layer are not satisfied here: 
Q 

displacements in the domain 

are not constant. Here J, (ar) is the Bessel function. 
The displacement of the surface of the medium 

1 
% = 3 SSIL'O.)dn=~?)K(a)Q(a)I,(aa)da. 

P r 

averaged over the contact domain is taken as a measure of the stamp 
Here 

Henceforth two kinds of 
uniformly distributed 

0 

P,=:P 
W ’ 

P=2n g(r)rdr 
s 0 

load are examined: 

Q(a)=2P* 

and having a parabolic distribution 

displacement in this case. 

(1.3) 

(14 

(1.5) 

The solution of the integral Eqs.(l.2) can be constructed by different methods in the 
case of a circular contact domain. The most efficient method is the method of factorization 
/2, 31, by using which the problem can be reduced to an infinite linear algebraic system with 
exponentially decreasing off-diagonal coefficients. However, difficulties associated with the 
elimination of logarithmic singularities introduced by the Hankel function @'*'(aa) for 
a=0 occur for the determination of PI = Q1(0). Consequently, the direct reduction of 
(1.2) to an infinite system with its subsequent regularization by the scheme developed in /4/ 
for static problems was used to perform the computations. 

We have 

cp (r) = & s K (a) Q1 (a) I, (ar) a da = 2 W$,‘) &r), r>a 
I- k=l 

tk = lh f ~0s K’ (4 la=tkQ1 (M ir 

where & are the poles K(a) located above the contour c going along the real axis Ima = 0 



and deviating from it only when circumventing 
absorption principle. 

It follows from (1.6) that 
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the real poles in conformity with the limit 

The function QI(a) is entire; consequently, the poles induced by the zeros K(a) in the 
representation (1.6) should be eliminable, i.e., the condition 

F (Zi)$ @ (ZJ = 0, 1 = 1, 2, 3, . . . (1.8) 

should be satisfied (zi are the zeros of K(a)), which yields a system to determine t, 

B-s = g; b = 1) b,k Ilz1=1: 
8 = {Sl, s,, . . .L g = {g1, g2, . . .) 

(I.9 

BI, = T-& Gk 
‘k 

‘2 -5k 
tk= w 

The condition 
W (z,) + F' (z,) = 0 

must be added to conditions (1.8) for double non-eliminable zeros z,. 
However, for even O(a), F(a) this condition is satified identically for z, = 0 and 

yields no additional equations in (1.9). 
The elements of the matrix B have the behaviour 

b,, - (& - Zi)-r, 1, k + m 

which permits extraction and inversion of the principal part of the system explicitly in the 
case when there are no multiple zeros. 

unit 

The inverse matrix for the matrix C = (1 Cfk IITk=l, Clk = I/(& - Z!) iS constructed in /4/. 
Multiplying system (1.9) on the left by Cm1 we arrive at a regularized system (E is the 
matrix) 

(E + R) s = f; R = C-‘D, D = B - C, f = C-‘g 

Having determined s from the system (l.lO), we find 

(1.10) 

iUl= zi%l= 
P,W=Q,(O)=h+J'o-- Ktoj -+k 

Hf) (4,) --_ 
K(")k$ 0 k’k 

H(l) (a5 ) : 
(1.11) 

The quantity Pp = F (0)/K(O) is identical with the solution of the unmixed problem for 
given surface displacements (unity in the domain Cl and zero outside the domain 51 ), and 
Po = Q, (0)/K (0) takes account of the presence of displacements outside the domain 8. 

2. Graphs of the amplitude IP,l, determined exactly by means of (1.11) (the solid line) 
and approximately for a uniform load (Pz on the dashed line) and a parabolic load (Ps on the 
dash-dot line) for Y= 0.3 as a function of a and o are shown in Figs.1 and 2. Where the 
results agree (in the scale of the sketch) only one line is presented. The dispersion curves 
(the graphs L,,(O), P,,(O)) for the case under consideration are in /2, 5/, while the form of the 
complex branches of these curves is presented in the paper mentioned in the footnote. 

Analysis of the results shows that at low frequencies (0<3) the approximate values P, 

and P, agree quite satisfactorily with the exact dependence of PI(a) in the range of variation 
(I E [0.5] considered. For small a and PI(a) the curve Ps(4 (a parabolic load) approaches 
more closely here while for large a the curve Pa(a) (a uniform load) turns out to be closer 
in many cases. 

The nearness of P, and P, for small a is explained by the fact that the principal terms 
of the asymptotic form of these functions as a-0: 

P”, (a) = A, p (1 - p) a + 0 (G), a - 0, m = 1, 2, 3 (3.1) 

A, = AS = 8, Az = S/&=; y = us/u, 

(the quantity o is fixed). 
The representation (2.1) shows that for small a the dynamic contact stiffness is practi- 

cally independent of the frequency and is identical with the static stiffness of a homogeneous 
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half-space. This agreement is preserved over a fairly broad frequency 
neighbourhood of the natural vibrations frequencies of the layer. 

range, excluding the 

-42 (I 

Fig.1 

0 2 4 6 ” 

Fig.2 

The agreement between the values of P, found by (1.111 and (2.1) for small a, with the 
requisite accuracy, was a good check on the method being used since it has constraints on a 
from below and its accuracy increases as a increases (l/R/I-O in (1.10) as a-m). Therefore, 
Pl is determined with the requisite accuracy over the whdle range of variation a~@,-). 

For a>3 the curves of P2(4 and P3(a) are in agreement with the curve of P, (a) in 
a definite range a<@,(o) while periodically repeated deviations of theapproximate curves from 
the exact one are observed for a > a, ((0) . The dependence of the upper bound for satisfactory 
agreement of the results a,, on the frequency has the form of a hyperbola ~,(o)=c/o. 

For a<a, the diameter of the contact domain is substantially smaller than the length of 
the surface waves being excited in the layer; consequently the layer surface is shifted entirely 
to one side of the equilibrium position under the action of a given harmonic load in the domain 
of its application. The average displacements. wO, determined by integrating the surface 
displacement in the domain of load application, describe the mean deviation of the surface from 
the equilibrium position in this case. 

As w increases the wavelength diminishes and buckling zones appear in the domain of load 
application. In this case the quantity W, decreases, resulting in an increase in P, and P, 
as compared with P,. 

Let us examine the change in phase Cl1 that governs the resonance properties of the medium 
during the vibration of massive bodies on its surface. For 8,=0 infinite resonances are 
possible, for small i& bounded, and there are no resonances in the remaining cases /6/. 

We have 8,zO in the quasistatic zone for any a O<e<7cxiZ i.e., infinite resonances 
are always possible. But here the conditions for the origination of bounded resonances in the 
travelling wave zone e)niZ depend substantially on w and a. On the basis of an analysis 
of the relation S,(w) for a rectangular stamp of dimensions 3x4 a deduction was made earlier* 
(*Babeshko V-A., Glushkov E.V. and Glushkova N.V., On the Resonance Properties of a Stamp 
Elastic Layer System. Unpublished Elanuscript 8329-B VINITI. December 4, 1985.) that the ranges 
in which bounded resonances (tl 1~O) axe possible will alternate with those in which resonances 
cannot be (9,~ --n) and the range boundaries are the natural vibration frequencies of the 
layer (the frequency for the appearance of uneliminable double poles 5r = 0). This deduction 
remains entirely valid for a commensurate with the layer thickness while G-O for a-+0 for 
all frequencies (Fig.1). 
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Therefore, the possibility of bounded resonances depends not only on 0 but also on a: 
as 0-o a bounded resonance in mass is possible at any frequency o> ~12. 

The study of the dependence of the contact stiffness on the frequency is of independent 
interest. Such results have been obtained earlier for large rectangular stamps (see /5/ and 
the bibliography given there). Curves of II-‘,(o) I, et(o) are presented in Fig.2 for different 

values of a. 
As we noted above, the fact that for small a the quantity J', remains constant over a 

broad frequency range is essentially new. As before, J', = u at the layer natural vibration 
frequencies (o=2.89; 2.93; 7.64; 8.82) including also for double &.$;a on the left boundary 
of the reverse wave ranges (the dependence p, (@ in the reverse wave range was given earlier 
in a coarse scale*). ("Babeshko V.A., Glushkov E.V. and Glushkova N.V., On the Resonance 
Properties of a Stamp Elastic Layer System. Unpublished Manuscript 8329-B VINITI. December 

4, 1985.) 

The authors are grateful to V-A. Babeshko for discussing the results. 
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PULSE PROPAGATION iN MEDIA WITH SMALLVELOCITY DISPERSION AND 
RELAXATION TIME SPECTRUM OF THE FORM i/7. EXACT SOLUTION* 

S.Z. DUNIN andG.A. MAKSIMOV 

Pulse propagation in a medium whose dispersion-dissipative properties 
correspond to the presence of relaxation mechanisms in the medium, whose 
relaxation times form a spectrum of the form g(@-1/r, is considered. 
In the case of small velocity dispersion an exact solution is obtained 
for the pulse shape and it is shown that it is equivalent to the 
description of pulse propagation in a medium with "EC-memory". 

Acoustic wave propagation in real media can often be considered within the framework of 
a linear approximation of hereditary elasticity theory (HET) /l/. Phenomenological HET coef- 
ficients can be obtained using the theory of internal parameters /2/ characterized by relax- 
ation times to a thermodynamic equilibrium state. 

Exact solutions are known only for certain rheological models of media: a standard body 
131 characterized by a single relaxation time, its limiting case of Voigt /4, 51 and Maxwell 
/6, 7/ media; in the case of small velocity dispersion for the model of a medium with "E-memory 
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